skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the impact of altitude on leaf hydraulic, gas exchange, and economic traits is crucial for comprehending vegetation properties and ecosystem functioning. This knowledge also helps to elucidate species' functional strategies regarding their vulnerability or resilience to global change effects in alpine environments. Here, we conducted a global study of dataset encompassing leaf hydraulic, gas exchange, and economic traits for 3391 woody species. The results showed that high‐altitude species possessed greater hydraulic safety (KleafP50), higher water use efficiency (WUEi) and conservative resource use strategy such as higher leaf mass per area, longer leaf lifespan, lower area‐based leaf nitrogen and phosphorus contents, and lower rates of photosynthesis and dark respiration. Conversely, species at lower altitudes exhibited lower hydraulic safety (KleafP50), lower water use efficiency (WUEi) and an acquisitive resource use strategy. These global patterns of leaf traits in relation to altitude reveal the strategies that alpine plants employ for hydraulic safety, water use efficiency, and resource, which have important implications for predicting forest productivity and acclimation to rapid climate change. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Extracellular vesicles (EVs) are membrane-enclosed nanometer-scale particles that transport biological materials such as RNAs, proteins, and metabolites. EVs have been discovered in nearly all kingdoms of life as a form of cellular communication across different cells and between interacting organisms. EV research has primarily focused on EV-mediated intra-organismal transport in mammals, which has led to the characterization of a plethora of EV contents from diverse cell types with distinct and impactful physiological effects. In contrast, research into EV-mediated transport in plants has focused on inter-organismal interactions between plants and interacting microbes. However, the overall molecular content and functions of plant and microbial EVs remain largely unknown. Recent studies into the plant-pathogen interface have demonstrated that plants produce and secrete EVs that transport small RNAs into pathogen cells to silence virulence-related genes. Plant-interacting microbes such as bacteria and fungi also secrete EVs which transport proteins, metabolites, and potentially RNAs into plant cells to enhance their virulence. This review will focus on recent advances in EV-mediated communications in plant-pathogen interactions compared to the current state of knowledge of mammalian EV capabilities and highlight the role of EVs in cross-kingdom RNA interference. 
    more » « less
  3. null (Ed.)